Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases beta-lactam susceptibility and virulence.
نویسندگان
چکیده
The twin arginine translocation (Tat) system is used by many bacteria to export fully folded proteins containing cofactors. Here, we show genetically that this system is essential for Mycobacterium tuberculosis, as the tatAC operon and tatB genes could be inactivated only in partially diploid strains. Using comparative genomics, the rv2525c gene of M. tuberculosis was identified as encoding a histidine-rich protein, with a twin arginine signal peptide, and orthologous genes were shown to be present in several but not all actinobacterial species. Conservation of this gene by Mycobacterium leprae, which has undergone reductive evolution, suggested an important role for rv2525c. An rv2525c knockout mutant was constructed, and biochemical analysis indicated that the mature Rv2525c protein is secreted. Upon exposure to antituberculous drugs, rv2525c expression is significantly up-regulated together with those of other genes involved in cell wall biogenesis. Phenotypic comparison of the mutant with the parental strain revealed an increase in susceptibility to some beta-lactam antibiotics and, despite slower growth in vitro, enhanced virulence in both cellular and murine models of tuberculosis. The Tat system thus contributes in multiple ways to survival of the tubercle bacillus.
منابع مشابه
The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases.
The twin-arginine translocation (Tat) pathway exports folded proteins across the bacterial cytoplasmic membrane and is responsible for the proper extracytoplasmic localization of proteins involved in a variety of cellular functions, including pathogenesis. The Mycobacterium tuberculosis and Mycobacterium smegmatis genomes contain open reading frames with homology to components of the Tat export...
متن کاملInteraction of Mycobacterium tuberculosis Virulence Factor RipA with Chaperone MoxR1 Is Required for Transport through the TAT Secretion System
UNLABELLED Mycobacterium tuberculosis is a leading cause of death worldwide. The M. tuberculosis TAT (twin-arginine translocation) protein secretion system is present at the cytoplasmic membrane of mycobacteria and is known to transport folded proteins. The TAT secretion system is reported to be essential for many important bacterial processes that include cell wall biosynthesis. The M. tubercu...
متن کاملCharacterization of the twin-arginine translocase secretion system of Mycobacterium smegmatis.
The twin-arginine translocation (TAT) system secretes fully folded proteins that contain a twin-arginine motif within their signal sequence across the cytoplasmic membrane in bacteria. Using a green fluorescent protein fused with a TAT signal sequence, we demonstrated that Mycobacterium smegmatis contains a TAT system. By inactivating individual genes, we showed that three genes (tatA, tatB, an...
متن کاملA β-Lactamase Based Reporter System for ESX Dependent Protein Translocation in Mycobacteria
Protein secretion is essential for all bacteria in order to interact with their environment. Mycobacterium tuberculosis depends on protein secretion to subvert host immune response mechanisms. Both the general secretion system (Sec) and the twin-arginine translocation system (Tat) are functional in mycobacteria. Furthermore, a novel type of protein translocation system named ESX has been identi...
متن کاملThe PhoP-Dependent ncRNA Mcr7 Modulates the TAT Secretion System in Mycobacterium tuberculosis
The PhoPR two-component system is essential for virulence in Mycobacterium tuberculosis where it controls expression of approximately 2% of the genes, including those for the ESX-1 secretion apparatus, a major virulence determinant. Mutations in phoP lead to compromised production of pathogen-specific cell wall components and attenuation both ex vivo and in vivo. Using antibodies against the na...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 188 18 شماره
صفحات -
تاریخ انتشار 2006